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Abstract. The Hamiltonian limit of the corner transfer matrix (C1tv) of 2 generalized free-Fermion
vertex system of finite size leads to a quantum spin Hamiltonjan of the pasticolar form

N-I
%N = — Z {H (O':G:_'_[ +;LO':O';T+1 +h(0ﬁ +O'rf+1))} "

n=i

Diagonalization may be achieved for all pairs of parameters (A, &) with the use of some new elliptic
polynomials which extend the class of special polynomials known so far in the context of ¢TM.

1. Introduction

Recently we have studied the corner transfer matrix (CTM) of a free-Fermion eight-vertex
system at criticality [1]. This investigation has been part of a series of studies devoted to
special cases in the parameter space of this model where an explicit sotution can be found for
the diagonalization of such CTMs. The CTM is an interesting object in the statistical mechanics
of two-dimensional lattice models which was introduced by Baxter in the 70°s (see [2] for a
review and references to the original publications), and with which he was able to compute
the mean magnetization (or polarization) in exactly solvable models, such as the eight-vertex
model. Baxter has shown then that in the infinite limit of the two-dimensional lattice the
spectrum of the ‘geperator’ of the CTM is an equidistant spectrum in some domain of the
coupling constants. This result has been largely confirmed by numerous computations in
vertex models of the RS0S type [3].

The pecularity of this spectrum has aroused interest in the last decade for another discovery
in critical phenomena which has a similar structure. The hypothesis of conformal invariance
of critcal systems advocated by Belavin et al [4] leads to the conclusion that the generators
of row-to-row transfer matrices [3] as well as of CTM [6] of finite-size critical systems also
have equidistant spectra. It is therefore natural to ask whether there exists a relation between
these observations. In an attempt to clarify this question we have undertaken a systematic
study of the CTM of the simplest soluble system, the free-Fermion system (or its equivalent
vertex model). We shall usually place ourselves at arbitrary temperature T and consider finite
but large systems of size N. Therefore both limits ¥ — T; and N — co can be taken
independently.
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Let us summarize what has been obtained so far in the study of the CTM of the free-Fermion
systent. The most general free-Fermion system depends on two parameters: the anisotropy
parameter A, which measures temperature, and the reduced exiernal magnetic field A& [7].
From the standard method of Lieb et af [8] it is known that the CTM of a generalized free-
Fermion system may be diagonalized by diagonalizing an associated matrix obtained from the
eigenvalue equation of the generator of the CTM. This matix has the peculiar feature that its
eigenfunctions are special polynomials defined by recursion relations. In [9] we have solved
the simplest case
e A=landh=0
which is also a critical line. The polynomials obtained are particular cases of Meixner—
Pollaczek polynomials. In [10] we have considered the case of
e arbitrary Aand 2 =0
corresponding to an Ising model and found two types of Carlitz polynomials of imaginary
argument. Then several other cases are solved in [71:

e A =1and & arbitrary

where Pollaczek and Gottlieb polynomials are obtained:

o X = /h?, the disorder line [11]

where Gottlieb polynomials are found. It is remarkable that the third class of Carlitz
polynomials is also found in the CT™M of the discrete Gaussian model [12]. Lately we have
also obtained. the generalized Pollaczek polynomials in a free-Fermion vertex model with a
line of defects[13]. Up to now the polynomials encountered are all orthogonal polynomials
already known in the mathematical literature. Recently we have tackled other regimes in the
parameter space (A, i) where the orthogonality property is not known. First we have studied
in [1] the polynomials associated with the critcal line

A=2k~—1
and in this paper we shall deal with the general case
A>h?

where neither A nor # are restricted to satisfy any equation. The remaining regime of the
parameter space, A < A2, where additional mathematical complexities arise, will be treated in
a forthcoming publication.

As the reader may have noticed, the CTM of free-Fermion systems is a simple device of
statistical mechanics which introduces the special polynomials. The spectrum of a CTM of
size N is ‘essentially’ given by the zeros of a polynomial of size N, when N is sufficiently
large. Hence, as one may guess, the distribution of zeros tends to be a uniforma distribution as
N — oo, This fact confirms the findings of Baxter and verifies paturally the predictions of
conformal invariance in critical systems.

The new feature in this paper is the appearance of new ‘elliptic’ polyromials which
generalize the only known types of elliptic polynomials discovered by Carlitz [14]. Some
properties of these polynomials including the asymptotic distribution of their zeros, hence the
eigenvalue spectrum of the system, will be given.

Physically the ‘time’ generator of such free-Fermion eight-vertex problems is simply the
anisotropic X ¥ quantum spin chain in a magnetic field . The counterpart of this using the
CTM approach is the following generator for a finite chain of M sites:

N-1
Lo= Y n(ofo, + Aaoly) + h@n — Do)+ AN — Do, (1)

n=1
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where A is the anisotropy parameter essentially describing the termperature. Note the linear
increase of the coupling strength along the chain. The problem of the simple chain, i.e.
without that specific linear increase of the couplings, has been fully solved long ago [15], but
the generator Lg has not yet, to our knowledge, been solved explicitly for general values of A
and A.

The paper is organized as follows. In section 2 we outline the method employed for
calculating anaiytically the eigenvalues of the generator Lg which is based on the introduction
of generating functions for the components of the eigenvectors of Ly. The recursion relations
derived for the components of the eigenvectors are then equivalent to a set of coupled first-order
differential equations which are solved formally in section 3. In the solution we encounter an
elliptic integral. We need to appropriately parametrize and invert this elliptic integral, which
is done in section 4. This leads us to expressions for the generating functions in section 5
which are used in section 6 to derive explicitly the components of the eigenvectors as elliptic
polynomials from Cauchy’s theorem. In section 7 finally we obtain an integral representation
for the components of the eigenvectors that can be used to calculate asymptotically, for a large
system size N, the eigenvalues of Ly. Section 8 summarizes our findings and gives an ountlook
on open problems. In the appendix we give some details for certain lHmiting cases of the
analysis of the main text.

2. Method for diagonalizing Ly

The standard methad we adopt here is that of Lieb et &l [8] which consists of rewriting Lg in
terms of Fermion operators. Then one is left with the diagonalization of two non-commurting
matrices (A — B) and (A -+ B) in the language of Lieb et al. If we denote the components of
the eigenvectors yr and ¢ by ¢ = (¥, ..., ¥ny)and ¢ = (¢4, ..., $n), wehave tworecursion
relations coupling the components ¥, and ¢,: - :

(8 — De1 + Mgt — AQR — DY = £8, @
Al = 1)pn—1 + nPpr1 — A28 — D)y = g9, . 3

For the end components, n = N, of the finite chain we have only

(N — D1 — (N — Dy = e¢x . @)
AMN — Dgn-1 — (N — D¢y = e¥n - 3

Using the recursion relations (2) and (3), the equations for the end components (4) and (5) are
equivalent to

Ol = by : (6)
Ay = hyy 7

which resemble periodic boundary conditions. Note that the components ¢y and ¥y are
only defined through these equations. ‘

The method employed is simple in principle: it consists of finding an expression for ¥,
and ¢,, then substituting into (4) and (5), thus obtaining the eigenvalues €. However, as we are
only interestad in large values of N, only an asymptotic expression will be necessary. For the
cases known so far [7], the v, and ¢, are expressible in terms of known special polynomials.
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We thus expect that for general values of A and & they are also polynomials of the elliptic
type which are seen in the case of the doubled Ising model [10]. In special cases where A
and /4 were chosen to satisfy particular conditions it was previously possible to identify the
recursion relations (2) and (3), after some trivial transformations, with the recursion relations
for some known polynomials. Here, as in another case discussed recently [13], we introduce
the generating functions as formal power series in a parameter ¢ with the components of the
eigenvectors as coefficients

wi) =Y "y, ’ 8)
n=1
o) = "lg,. o

n=1

The recursion relations (2) and (3) are then equivalent to a set of coupled first-order differential
equations for the generating functions

(12 4+ A —2h0)Y + (¢ — RYY = 8¢ (10
(A2 +1—=2h0¢" + (Mt —h)p =5y . (11)

From the explicit solutions yr{#) and ¢ (¢) of these differential equations with the given initia]
conditions one may then extract ¢, and ¥, by using the Cauchy theorem. Then for large N the
boundary conditions (&) and (7} determine the spectrum of Lg as in previous works on this series
[1,7]. Since the presence of two parameters A and /. complicates the mathematical working
considerably, we shall proceed step by step in presenting the solution. The central problem at
hand is simply the parametrization by elliptic functions of the solution of the coupled set of
differential equations (10) and (11).

3. Formal solution of the differential equations—generating functions

Before writing down the formal solution of the differential equations (10) and (11), we note
that these equations, as well as the recursion relations for v, and ¢, (2), (3), remain globally
invariant under the combined transformations

R h=>23"h and e = A7le
followed by

¥ —>¢ and ¢ =Y (Yn — & and G0 —> Yn).
This property allows us to restrict ur study to the domain § defined by

0<i=<l and O<h<l.

Using this symmetry relation, integrating factors can be found [16] and, as in [1], the general
solutions of the differential equations take the form of Meixner’s generating functions [17] (up
to constants)

¥ (t) o fe)exp(ew(t; A, k) (12)
@ (t) o g{t)explew(t; A, £)) (13)
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where
F(t)y = (@*+A—2h"\2 g®) = (A2 + 1 —28)"112 (14)

and w = w(t; A, k) is the two-parameter elliptic integral

4 .
Wt Ao B) = f dx F(1)gx). (15)
f0 ‘ .

The lower bound of the integral will be chosen so as to agree with known results. Note that for
h =0 one recovers the case of the doubled Ising model studied in [10]. Generating functions
of the type (12) and (13) are called generating functions of the Meixner type by Chihara [18].
Thus it appears that (12) and (13) represent perhaps the most general case known so far, The
main problem here is the inversion of the two-parameter elliptic integral w(¢), (15), and then
the representation of the ¥, and ¢, as contour integrals.

4, Parametrization and inversion of the elliptic integral w(£)

An essential step in the explicit solution consists in an appropriate parametrization of the elliptic
integral w(t). We shall follow here the procedure given by Greenhill [19]. Both polynormnials
N(t) = t? 4+ A —2ht and D(t) = At>+ 1 — 2kt appearing in w(¢) have the same discriminant
A = h% — A, The zeros of N (¢} in the parameter range 0 < A < [ and 0 < £ < |, the region
S, are

y =h+~A S=h—vA ‘ (16)
whereas D(t) has zeros at

-8 ) .
o= B=1. : an

=

The square § is divided into two regions by the disorder line A = A?* [7], separating
oscillating from monotonous behaviour of the correlation functions [11].

In the region §; (A > %) the zeros are pairwise complex conjugate, whereas in the region
85 (A < £?) the zeros are all real and ordered according to —00 < § < . < f < @ < 00

The inversion of the elliptic integral in the region §; is more involved and we shall defer its
study to a subsequent publication. In the remainder of this paper we shall be only concerned
with the region 5.

The region S is limited by three boundaries which contain known results [7]:

» /2 = O0—the doubled Ising model, viewed as a free-Fermion eight-vertex model [10]:
and ¢, are Carlitz elliptic polynomials of imaginary arguments.

e A = l—isotropic case in the presence of a magnetic field 4. The solutions V¥, are given in
terms of Meixner Pollaczek polynomials.

s ) = h*—the disorder line, where the solutions ¥, are expressed in terms of Gottheb

(Meixner polynomials of the first kind) polynomials.

Note that on these three boundaries the three types of polynomials are all orthogonal
polynomials, and their recursion relations are always reducible to tridiagonal form. The ¥,
and ¢, studied here provide an interpolation between the three classes of polynomials and are
presumably also orthogonal polynomials. :
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The elliptic integral w(¢} may be inverted in a standard way: one may give ¢ as a function
of w following the example given in the book of Greenhill [19, section 70]. In the following
we outline Greenhill’s procedure.

Through the change of variables

N(@t)  £2+r—2h
D@ty M2+ 1-—2ht
the elliptic integral is transformed from its Jacobian form w(z) into the Weijerstrall form
' 1 y dx
w(y) = ——= | (19
A — 2 Sy A —Xx)(x — y2)

where yp = y(tp) and y; and y» are the maximum and minimuom values of y(¢), respectively,
at the points #; and # related by

RE(L = y120% = (O — 31.20(1 — Ay12) yi=yy" (20)

A
t,z’z— l;l; tia+1=0 1 =r2“ 21)

y(t) = (18}

and

2 —1-[(1+12~2k2)—(1—l)\/(1+l)2—4h2}<y1. (22)

=20 -1

Then from the standard Weierstrall form one may solve the inversion problem in three
different ways:

o [n—y
w(y) = sn” |k
A—h? ( Y—n )
Y2 -1 Yy—x
= cn —
h—h% - (v}’l“)'z )
—y o 0 W) e

in terms of the Jacobian elliptic functions sn{v, k), cn(v, £) and dn(v, «) of argument v and
modulus «. In particular, the modulus « is given by «? = 1 — y2, thus y, is the complementary
modulus of «. Conversely, for Jater use one can extract from (23) the quantities

y1— ¥ = (31 — ya)sut(wg, «)
y — ¥ = (1 — yo)en*(wg, ) (24)

y= ldnz(wqr,lc)
Y2

with ¢ = ~/(* — h%)/y,. To obtain ¢ as a function of w, i.e. to invert the elIiptic'integral (15),
we use equation (102) of Greenhill [19]

_ (=D —1)?
A2 1 —2ht

A=Ay
Y=g —onr

- (25)

(26)
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By dividing out these equations and using the first two equations of (24), as well as y;y2 = 1
and #1, = 1, we obtain the following form for ¢t = (w):

ti+/A — y20n{gw, K) + /Yo (1 — A2} sn(qw, k)
VA= yzen(gw, k) + +/y2(1 — Ay2) snfgw, k)

Thus in the case of the two parameters A and # the inversion of (15) vields a rational function
of the Jacobi elliptic functions sn and cn. However, in order to agree with the known results
on the boundary line i = 0, where we have a canonical elliptic integral of Legendre form and
hence ¢ is simply proportional to a Jacobi elliptic sn(v, &) function, as was always the case in
previous studies [7] on special lines where one had therefore only one parameter, we transform
to imaginary argument and complementary modulus y; (k* + y% = 1) with the transformation
formulae (Yacobi's imaginary transformation) ’

tHw) = @7)

_sn{igw, k) S |

sn{gw, k) = lcn(iqw,ic’) en(quw, i) = o, (28)

Thereby we obtain
_ h—i/ysnligw, y2) . ' 09)
1 — it /yz sniqw, y2)
At i = 0 one may directly invert the elliptic integral of Jacobian form
d dx
w(r) = f
0 OxZ+D{xE+A)
to obtain
* A‘; t
fw) = VAR 7T
cn(w, A

By transformation to imaginary argument and complementary modulus, this yields 7

t = —iv/Asn(iw, A} ' (30)

Of course we require that (29) reduces to (30) in the limit # — 0. To achieve this we shift
the argument in {29) by K’, the complete elliptic integral of the complimentary modulus, i.e.
the quarter period in the imaginary direction of the Jacobian elliptic functions: w = —u 4wy
with guig = K'(¥2), which transforms the function sn according to

1

Sﬂ(U-l—iK’,k) = m

Through this last transformation we arrive at

_ h—i/yasn(igu, y2)
1 — itz /72 snligu, y2)

Basically this result means that we have to choose the lower integration bound in (15) in such
a way that (31) holds. For i — (¢ (i.e. y2 = A and 1 — 0) equation (31) now agrees with
(30). From now on we shall use this condition at & — 0 as a reference which will also fix the
constants in the generating functions (12) and (13),

(31
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5. Expressions for the generating functions

From (26) we have for the prefactor of the generating function ¢(¢)

Pl — k= |

(t-—tz).
y—=i

Using the second equation of (24) and performing both transformations described above
consecutively, i.e. Jacobi’s imaginary transformation and the transformation according to the
shifted argument, we obtain, together with (31), to evaluate (¢ — £,)

1 _ [1=3 1-in/msndigu, yo)
AT+ 1 —2ht =iy (1-12)dn(igu,y2)

For 2 — 0 this expression has the correct limit [10]

lim ! 1
koo ofaf2 + 1 —2ht  On(igu, A)

Hence we obtain the generating function of the ¢, as

we 1= 2 -1 ) d 1 — it H ,
6(6) = e _ y5 exp(g™ € 2(3’2)) 12\/3_’_: sn(igu, y2) . (32)
VA2 41— 2kt 11—y, 1—-2) dn(igu, y2)

Similarily, using the first equations of {24) and (25) we obtain, after the necessary
transformations, the generating function for the other set of components of the eigenvectors

Vn

by S [ 1ok ewqTieR/00) 1 ~ iy /T ondigu, 32) @3
VEEL=2 YU =dym)  (A~8)  Jyzcnlgu, y)e

To simplify the notation we shall set

= —l—ﬁ—exp(fI"IEK'(h)) (34
(1=2y2)
and
& =i/Frsnliqu, y2) (35)
so that
py= 2 L1788 i g oy = 2 1=tf o

(1 — 13) da(igu, y2) (1 —83) /zcnligu, y2)

(36
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6. The elliptic polynomials +7,, and ¢,

From the generating {unctions (12) and (13) we may compute the coefficients yr, and ¢,, which
are (_)f course functions of the eigenvalue ¢, with the help of Cauchy’s formula ’

1 —n-1
= — e de .
ot B0
Substituting ¥ (¢) by its expression (36) and using the variable & with

h—§ dr = — 1-#

S YT Tamwr®
we obtain
N & (1 —pE)
Ve ="30 P Fronteyn) (a —Erm S

where z = igu and x = g~ ¢, the scaled eigenvalue.
‘We can express 1, in terms of the usual Carlitz polynomials (cf [10])

= 7 Py(x) '
S 38
cn(z ¥2) pz:( ) p! ¢

where

c, for p even
Pr(x) = ‘
’ Dy for p odd

are the Carlitz polynomials of even and odd order, respectively, associated with the Jacobian
elliptic functions cn and dn Then 4, takes the form of a formally infinite series in these
polynomials:

N & P (1 — 28"
90 =33 by Pl e, (39)

The condition ¢ = O is equivalent to § = #» — & = (. Thus the contour integral in (39) may be
evaluated directly in the complex ¢ plane

_ 42 n
- 35 -y LT e o)

=
where .

on(p) = q;p( 1)7~ 4( )(;)(1—r%)M(rz)"—m+q. | (40)
We arrive at

mw—NZ%u i : G

(J/I)PHipl”
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However, the ¥, (x) are nevertheless polynomials of finite order # in the variable x. To see
this we first evaluate (41) formally for n = 0. We have

P Pa(x)

o(p) = () end %(x)——z:( ) =

Defining z; by
= i/y250(z2, ¥2)

we can resume the series and find
N eixm
J¥z en(zz, y2)

which is essentially a constant. From v taken formally at arbitrary values of z we can compute
all ¥, for n > 0 and thereby indeed show that v, are polynomials of finite order n. For
we obtain, for example, the following formula:

Wo(x) = (42)

Y (x) = {:2 - ‘333%} Vo)

which is a polynomial in x of first order after dividing out the exponential.
More generally we can show that ¥, is a polynomial of order # in x given explicitly by

N n n—1 (1- tzz) _ﬁ_ n n—z(l - IZ)ZEZ_
‘Mx)_{tz (n—z)tz It az2+ _2)" 2 ax2+

_1y _ 1" gn
¢ ’(n”q)zz 71— a)?-—+ +EX ()(1 2 }Tffo(x)

g!
(43)
With the same procedure we show that ¢, are polynomials in x of finite order n
o *(x
$a(x) =N§an<p)(—‘%;;—!. (a4)
Here
D; for p even
2, = { c;  forpodd
and we have forn =0
elxzz
dolx) =N dn(ez, 72) (45)

from which we again compute all polynomials ¢, (x) of order n > 0 explicitly:

R n\.a(l—5) 38 n \ a1 —12) 2%
= {1 - e 27
on(x) {12 (n—-l)tz o \ao2)? T2t

("‘Dq n n—q 2 ( l)n _2n__a_i_
e M AR (7)o oo
(46)
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7. Real integral representation and asymptotic behaviour

In the same spirit as in [10] we now derive the real integral representation for 1, (x), usin g (37)
in the complex z-plane. As before in [10], we choose the rectangular contour Im(z) = =K' (y,)
and Re(z) = £=K (y2) surrounding the point zz which now is not necessarily at 0, as was the
case in [10]. We obtain ¥, (x) as a sum of two contributions of the form

VN f"‘fm {ex,(,(yz)m {ts + LT sn(v, y2))"
ko (1 +itz./F2 sn{y, yz)yrt!

+ e~ *K Gmizv G2 — /32 5000, o))" }Cn(v y2)dv
(1 — it /y2 sn(u, yp) )+
kN K {eixK,(r)_xv (t2/32 + idn(v, )"
27 Jokw (V2 + itz dn(v, )y

—ix K (i) 4w (1'2\/% — idn{v, &))" 7
K' (k)4 (J/¥z ~ iy dnfy, ke y)nH ]cn(u, k)dv. @7

Ynlx) =

+e

Note that in the second part of (47) the elliptic modulus & = /1 — ¥2, the cérpplémentary
modulus of y;, appears. As in [10], the second contribution in (47} dominates when n — oo
because the complex number . : |

t £ 1/¥3 sn(v, ¥2)
1 Zin./yasn(v, y2)

has a modulus smaller than 1:

13 + y2 sn2(v, y2) -
1+ t2yy sn2(, y)

since y, sn®(v, y2) < 1is always fulfilled for general values of v. On the contrary, the modulus
of the complex number

L. /Y2 £idn(v, «)
2 kit dn(y, &)

may be larger than 1, since y, < dn(v,«) < 1, ie.

tzzyz+dn2(v,lc)v {> H for0 <v< K/2
¥z + £ dn’(v, k) <1 forK/j2<v<K.

Hence for # — o0 we only have to consider

Y, (x) = ﬂ K@ {eix!{'(,c)_” (t2./¥2 +idn(y, €))*
T (/77 + ity dnfp, £))r+!

27 Jo_kgo
—ix K’ () +xy (t2./Y2 — idn{y, k))* 4
T (/%2 — it dn(v, €)yr+ en(u, k) dv. 43)
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Using the fact that dn(v, &) and cn(v, k) are both even functions of the variable v, we derive
an alternative form for the asymptotic of yr, (x)

Y (x) = %’Y{cos(x;{ "wNZTu(x) = sin(x K" (e, (%)} (49}

where Z,(x) and T/, (x) are the following integrals:

Kt td i
T, = fo /7200819 + (v, k) sinny cosh(xv)enlv, €)p" (v) dv (50)

y2 + £ dn*(v, )

T ) = f‘m’} JYasinng — 12 dn{v, k) cosng
" 0 y2 + 12 dn*(v, &)

cosh{xv}en(y, ©)p" (v) dv (51)

with p(v) and @(v) defined by

t2./¥z +1dn{v, &)
VY2 +itzdn(y, k)

p(v) ¥ = (52

We observe that p(v) is adecreasing function of v, aquiring values from v (Ly2 + 1)/ (32 + £2)
aty = Oto v (yy -+ ) /(z‘2 v+ D) atv = K{x). Since ,«o(2 K) = 1, theintegration interval for
large n ~» cois practically limited to [0, & /2] only and we can approximate g by its maximum
value p & /(2 By + 1)/ (32 + £3). Moreover, in this interval, cosh(xv) cn(z, &) &2 [ and peaks
at a point near v == K. This means that I (x)} = T, and Z/(x)} = T are constants independent

of x:
T - 2y, +1 g fIK(“) JY2cosng + tr dnfv, k) sinng d 53
" Yot tzz 0 Y2+ 1y 2 dn(u, &)
S .
T = t2yy +21 fzx(x) Vasinng -—ng d;1(v, k) cosng . 54)
yat+i 0 y2 + 25 dn(v, &)

Within these approximations one may estimate the zeros of ¥, (x) in the asymptotic limit
n — oo. They are given by the equation

I
tan(x K () = — =tand, (55)
Iﬂ
or, for each #, the zeros x,;, are labelled by p:
Xpp =6n+ pm. (56)

The eigenvalue problem set in (2)-(7) is equivalent to

Ay — by
t; ! = —_—=
an(xy, K'(k)) va+1 T, tan 6y (57)
leading to
A—h? 1
€Np —— ———1{fy + pr}. (58)

K'{x)
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The spacing between the ¢y, is thus constant and there is a shift for each N given by 8y,
defined by (57).
A similar analysis for ¢, (x) may be given. We only quote the results

N {exxf<,,z)+,-x,, (12 + iy/Fasn(, y2))"
2 J ki (1 + itz /yasn(v, y2))r+!
i .
4 ¥k O)-ixy (2. 1/yz sn(v, y2)) }dn(v 1) do
(1 = it/ sn(y, )y
+ N { K )= (f2./¥2 +1idn(w, €)Y
2n - (x) (/2 + iz dn(v. €))+!

—ix K () +xv (IZ,\/—E—ldH(U .FC))H 7
O s —Tmant, ic))"+1}sn(u ©)dv. (59)

Again only the second integral dominates as # — oo for the same reason as before in the
expression for ¢r,. This last part may be recast into the following form, which incidently is
proportional to i

G (x) =

+

() = 2 KN{cos(xK "N (x) — sin(x K" ()T (x)} . (60)
with
- Kt} fyz cosng + t2dn(v, ) sinng | n -
ASE /D RN ©1)
- K@ fyzsinng — t;dn(v, k) cosng . ‘
I,(x)= j; et t% a0, ) Smh(xv)ksn(v, ©)pt(v)du (62)

where p and @ are again given by (52). For # — oo the behaviour of g again limits
the integration to the interval [0, K /2] and p can be approximated by its maximum value
o = V{EZyy+ 1)y, +#3). However, here the product sinh(xv) sn(v, k) behaves as xv? in
[0, K /2], instead of being nearly a constant of order unity. Thus we obtain the asymptotic

behaviour for ¢, (x)

balx) ZI;N {x cos(x K" ()T, — x sin(x K" ()T} (63)

Z ( 5y2+ l)nféx(”) s 4/F2 0809 + trdn(v, &) sinng du
V »2+2 0 ¥2 + £ dn* (v, k)
2 bk
3 ( t2y2+1) fz 2+/¥28inng — t2dn(v, k) cos ng dv
" J’2+?% 0 yz+t22dn2(v i)

where now

are constants independent of x. The zeros i,lp of ¢, (x) are asymptotically given by

tan (e K () = (64)

EHIE ]
ha)
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The boundary conditions (6) and (7) of the CTM problem yield the eigenvalues e,

= Tyag — kL
tan(q_IENpKr(lC)) = taneN = ._‘!ji_.__?r. o ‘ (65)
N+L T hIN
or
€N =f—q—{éN + pr}. (66)
PR K)

We observe again that the levels ey, are equidistant in this limit of large N, but there is
a translation by an amount {g/K’(x))8y for each polynomial of order N.

Equations (58) and (66) are the main results of this paper, again confirming, for the simplest
vertex, model, the results of Baxter [2] in an explicit calculation for a finite system.

A last remark concerns the level spacing. From (58) and (66) we have

qr qr
A= M N = ey T RO

- {67)

The modulus used here is y; of (22). For & = 0 we have y; = A, which is thus different from
the modulus parametrization used in [10]. which was A~!. Moreover, the normalization of
the energy levels is also different due to the fact that the Carlitz polynomials are used directly
in [10]. The Carlitz polynomials are normalized so that the first one is always ! or x, depending
on the parity. Here our ¥(x) is not 1 but contains an x dependence according to (42) which
may be divided out later. _

Ath = 0, where y» = A and & = 0, there is a decoupling in (47) and (59), respectively,
and we recover the results of [10].

As in [1], we have chocked the level spacing (67) numerically with standard methods (cf
[20]) of diagonalizing the pentadiagonal matrix which is equivalent to the recursion relations
(2} and (3) if either v, or ¢, is eliminated. We have observed equidistant level spacing to
rather high accuracy already for very moderate system sizes of the order of N = 20.

8. Summary and conclasion

The generator of the CTM of a generalized free-Fermion vertex system of finite size is a quantum
spin chain Hamiltonian with particular interactions which increase linearly along the chain.
We have presented the analytical diagonalization of this particular quantum spin chain in the
asymptotic regime of large system size N for arbitrary values of the parameters, the anisotropy
A and the magnetic field %, in the region where A > #2.

Let us briefly summarize the methods applied to accomplish our goal and restate our
main result for easy reference. The asymptotic diagonalization has been achieved through the
explicit construction of a new class of elliptic polynomials which are the components of the
eigenvectors of the problem. In this construction an elliptic parametrization of the generating
functions of the polynomials has been used which is based on the treatment of a two-parameter
elliptic integral. The asymptotic evaluation of an integral representation of these polynomials
yields the eigenvalues, given by (58) and (66), respectively, which are equidistantly spaced
with spacing

qiw

A= X ow
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the modulus y, of the complete elliptic integral & (y,) being related to the generating functions
of the eigenvectors and given explicitly in (22). This equidistant spacing is the main result of
the present work, extending the findings of previous studies [L, 7, 9] to general values of the
parameters and thereby confirming once again the general expectation [2].

We bave not touched on the issue of the orthogonality of the polynomials i, (x) and
¢, (x), which may be called associate Carlitz polynomials. Since the three limiting cases are
orthogonal polynomials, it is natural to expect that the ‘associated Carlitz polynomials’ remain
orthogonal. Presumably the proof'is based on the continuous fraction expansion of some elliptic
functions interpolating between the Jacobian elliptic functions cn(x, £) and dn(x, £) [14]. We
have not succeded in proving this yet.
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Appendix

As we have seen, the main problem has been the inversion of the elliptic integral of (15). The
solution obtained was given in (31), which, upon replacing #; by its expression, reads

Rl = y2) — {1 — Ay2)./y2snligit, ya)
(1 —Ayz) — ih(1 — y2)./y2 snligu, ya)
In this appendix-we check the limit A — 1 against a direct calculation. Let us assume

A=1—e¢, theny, = I —€/+/1~hZ or, using 4 = cos# asin[7], y2 = 1 — ¢/ sin6. Then to
first order in €, {1 — Ay} = e(1 + I/ sin'd), and we have

%m} sn(igu, y2) = tanh(ix sin &)

and

lim ¢ = cos@ + (1 + sind) tan(u sind)
w1 (1+sin 8) + cosd tan(x sin 6)

which vpon inversion gives ¢ as a function of #:

u(t) = 1 0 (—1+sin9—tcosﬁ)—!—i(cose—(1—|—sin9}t))
T 2ising (1+sind — ¢ cos @) — i(cos @ — (1 + siné)t)
or
@) = 1 t—e 8 0+m/2
= Sising \ 7 — e Y

which agrees with the u(¢) computed directly from the integral (15) with A = 1.
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Next we check the limit A — »2. There we have

" A—h? 0
=
Y2 (1 _ kz)z
and
o VS v
lim i /¥zsa(iqu, y2) = —————=—sinh((1 — £%)x).
2=+0 (1 =h2)

Now to obtain the correct limit we must impose a shift
w(l = 1) = x(1 - B%) = JK'(v) .

Then as y» — 0

. 4(1 — h2)?
= —p_1 — — By ST
ylzlmn_-x(l =) sn@/y2) =x(1 ~ k") —In P

leads to

l 2(1 - hz) e_xu_hZ) .

sinh((1 — 2%)u) = ey

Finally for » — h?

Iimn i/72 snligu, y,) = e~*—#%
Ya—r

+

which one obtains by direct integration.

The correctness of the two limits implies that the limiting generating functions are
generating functions for Meixner polynomials of the first and second kinds according to the
classification of Chihara [18] or the Gottlieb and Meixner Pollaczek polynomials according to
an independent classification.
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