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Abstract. The Hamiltonian limit of the comer transfer matrix (m) of a generalized free-Fermion 
vertex system of finite size leads to a guan” spin Hamiltonian of the paaicular form 

Diagonalizationmay beachieved forallpainof parameters (A, h)  withtheuseofsomenewelliptic 
polynomials which extend the c l s s  of special polynomials known so I% in the context of m. 

1. Introduction 

Recently we have studied the comer transfer matrix (a) of a free-Fermion eight-vertex 
system at criticality [l]. This investigation has been part of a series of studies devoted to 
special cases in the parameter space of this model where an explicit sohtion can be found for 
the diagonalization of such CTMs. The CTM is an interesting object in the statistical mechanics 
of two-dimensional lattice models which was introduced by.Baxter in the 70’s (see [2] for a 
review and references to the original publications), and with which he was able to compute 
the mean magnetization (or polarization) in exactly solvable models, such as the eight-vertex 
model. Baxter has shown then that  in^ the infinite limit of the two-dimensional lattice the 
spectrum of the ‘generator’ of the CTM is an equidistant spectrum in some domain of the 
coupling constants. This result has been largely c o n k e d  by numerous computations in 
vertex models of the RSOS type [3]. 

The pecularity of this spectrum has aroused interest in the last decade for another discovery 
in critical phenomena which has a similar structure. The hypothesis of conformal invariance 
of critcal systems advocated by Belavin et al [4] leads to the conclusion that the generators 
of row-to-row transfer matrices [5J as well as of CTM [61 of finite-size critical systems also 
have equidistant spectra. It is therefore natural to ask whether there exists a relation between 
these observations. In an attempt to clarify this question we have undertaken a systematic 
study of the CTM of the simplest soluble system, the free-Fermion system (or its equivalent 
vertex model). We shall usually place ourselves at arbitrary temperature T and consider finite 
but large systems of size N .  Therefore both limits T 4 T,  and N + cc can be taken 
independently. 

5 Present address: Department of Physics, Princeton University, PO Box 708, Princeton. NJ 08544, USA. 
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Let us summarize what has been obtained so far in the study of the CTM of the free-Fermion 
system. The most general free-Fermion system depends on two parameters: the anisotropy 
parameter A, which measures temperature, and the reduced external magnetic field h [7]. 
From the standard method of Lieb et a/ 181 it is known that the CTM of a generalized free- 
Fermion system may be diagonalized by diagonalizing an associated matrix obtained from the 
eigenvalue equation of thegenerator of the CTM. This matix has the peculiar feature that its 
eigenfunctions are special polynomials defined by recursion relations. In [9] we have solved 
the~simplest case 
e A = I a n d h = O  
which is also a criti.d line. The polynomials obtained are particular cases of Meixner- 
Pollaczek polynomials. In [IO] we have considered the case of 

arbitraryhandh=O 
corresponding to ;in Ising model and found two types of Carlitz polynomials of imaginary 
argument. Then several other cases are solved in [71: 

where Pollaczek and Gottlieb polynomials are obtained 

where Gottlieb polynamials are found. It is remarkable that the third class of Carlitz 
polynomials is also found in the cm‘of the discrete Gaussian model [12]. Lately we have 
also obtained~ the generalized Pollaczek polynomials in a free-Fermion vertex model with a 
line of defects~[l3]. Up to now the polynomials~encountered are all orthogonal polynomials 
already known in the mathematicalliterature. Recently we have tackled other regimes in the 
parameter space (1, h)  where the orthogonality property is not known. First we have studied 
in [l] the polynomials associated with the critcal line 

h = 1 and h arbitrary 

h = h2, the disorder line [ 111, 

A = 2 h - 1  

and in this paper we shall deal with the general case 

h > h2 

where neither h nor h are restricted to satisfy any equation. The remaining regime of the 
parameter space, h < h2. where additional mathematical complexities arise, will be treated in 
a forthcoming publication. 

As the reader may have noticed, the CTM of free-Fermion systems is a siniple device of 
statistical mechanics which introduces the special polynomials. The spectrum of a CTM of 
size N is ‘essentially’ given by the zeros of a polynomial of size N ,  when N is sufficiently 
large. Hence, as one may guess, the distribution of zeros tends to be a uniform distribution as 
N + CO. This fact confirms the findings of Baxter and verifies naturally the predictions of 
conformal invariance in critical systems. 

The new feature in this ,paper is the appearance of new ‘elliptic’ polynomials which 
generalize the only known types of elliptic polynomials discovered by Carlitz [14]. Some 
properties of these polynomials including the asymptotic distribution of their zeros, hence the 
eigenvalue spectrum of the system, will be given. 

Physically the ‘time’ generator of such free-Fermion eight-vertex problems is simply the 
anisotropic XY quantum spin chain in amagnetic field h. The counterpart of this using the 
CTM approach is the following generator for a finite chain of N sites: 
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where h is the anisotropy parameter essentially describing the temperature. Note the linear 
increase of the coupling strength along the chain. The problem. of the simple chain, i.e. 
without that specific linear increase of thecouplings, has been fully soIved long ago [E], but 
the generator LO has not yet, to our knowledge, been solved explicitly for general values of h 
and h. 

The paper is organized as follows; In section 2 we outline the method employed for 
calculating analytically the eigenvalues of the generator'& which is based on the introduction 
of generating functions for the components of the eigenvectors of Lo. Thelecursion relations 
derived for thecomponents of the eigenvectors are then equivalentto a set ofcoupledfirst-order 
differential equations which are solved formally in section 3. In the solution weencounter an 
elliptic integral. We need to appropriately parametrize and invert this elliptic ink@, which 
is done in section 4. This leads us to expressions for the generating functions in section 5 
which are used in section 6 to d e ~ v e  explicitly the components of the eigenvectors as elliptic 
polynomials from Cauchy's theorem. In section 7 finally we obtain an integral representation 
for the components of the eigenvectors that can be used to calculate asymptotically, for a large 
system size N ,  the eigenvalues of Lo.  Section 8 summarizes our findings and gives an outlook 
on open problems. In the appendix we give 'some details for certain limiting cases of the 
analysis of the main text. 

2. Method for diagonalizing LO 

The standard method we adopt here is that of Lieb et all81 which consists of rewriting Lo in 
terms of Fermion operators. Then one is left with the diagonalization of two non-commuting 
matrices (A - B )  and (A + E )  in the language of Lieb et al. If we denote the components of 
the eigenvectors @ and @ by @ = (@I, . . . , @ N )  and @ = (41, . . . , @ N > ,  we have tworecursion 
relations coupling the components @n and $n: 

- 1)11-,-1 + nWn+1 - h(2n - I)+" = E@,, 

. h(n - 1)h-i + nh+i  - h(2n - 1Mn = 

For the end components, n = N ,  of the finite chain we have only 

Using the recursion relations (2) and (3), the equations for the end components (4) and (5) are 
equivalent to 

which resemble periodic boundary conditions. Note that the components @ N + ~  and @N+l are 
only defined through these equations. 

The method employed is simple in principle: it consists of finding an expression for @n 

and &, then substituting into (4) and (5), thus obtaining the eigenvalues E .  However, as we are 
only interested in large values of N ,  only an asymptotic expression'will be necessary. For the 
cases known so far [7], the $,, and are expressible in terms of known special polynomials. 
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We thus expect that for general values of h and h they are also polynomials of the elliptic 
type which are seen in the case of the doubled king model [IO]. In special cases where A 
and h were chosen to satisfy particular conditions it was previously possible to identify the 
recursion relations (2) and (3). after some trivial transformations, with the recursion relations 
for some known polynomials. Here, as in another case discussed recently [13], we introduce 
the generating functions as formal power series in a parameter t with the components of the 
eigenvectors as coefficients 

H-P Eckle and T T Truong 

n=l 

The recursion relations (2) and (3)  are then equivalent to a set of coupled first-order differential 
equations for the generating functions 

(i2 + h - 2ht)@' + (t - h)@ = C@ 

(At2  + 1 - 2ht)@' + (hi - h)@ = E@ 

From the explicit solutions @(t)  and @ ( t )  of these differential equations with the given initial 
conditions one may then extract @,, and qn by using the Cauchy theorem. Then for large N the 
boundaryconditions(6)and(7)determinethespecr"ofLoasinprevious workson thisseries 
[1,7]. Since the presence of two parameters A and h complicates the mathematical working 
considerably, we shall proceed step by step in presenting the solution. The central problem at 
hand is simply the parametrization by elliptic functions of the solution of the coupled set of 
differential equations (IO) and (1 1). 

3. Formal solution of the differential equations-generating functions 

Before writing down the formal solution of the differential equations (10) and (1 I), we note 
that these equations, as well as therecursion relations for @" and 6" (2), (3), remain globally 
invariant under the combined transformations 

A+ A-' h+ h-'h and E +A- '€  

followed by 

@ + @  and @ + @  ( @ n + @ n  and @ n + @ d .  

This property allows us to restrict our study to the domain S defined by 

O i A i l  and O < h < l .  

Using this symmetry relation, integrating factors can be found [I61 and, as in [l], the general 
solutions of the differential equations take the form of Meixner's generating functions [17] (up 
to constants) 
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where 

f ( t )  = (t' + A - 2ht)-"* g ( t )  = (At' + 1 - Zht)-'lz (14) 

and w = w(f; A,  h) is the two-parameter elliptic integral 

The lower bound of the integral will be chosen so as~to agree with known results. Note that for 
h = 0 one recovers the case of the doubled Ising model studied in [IO]. Generating functions 
of the type (12) and (13) are called generating functions of theMeixner type by Chihara [18]. 
Thus it appears that (12) and (13) represent perhaps the most general case known so far. The 
main problem here is the inversion of the two-parameter elliptic integral W'(t), (15), and then 
the representation of the @n and #,, as contour integrals. 

4. Parametrization and inversion of the elliptic integral v(t) 

An essential step in the explicit solution consists in  an appropriate parametrization ofthe elliptic 
integral w(t) .  We shall follow here the procedure given by Greenhill [19]. Both polynomials 
N ( t )  = t' +A - 2ht and D(t)  = At2 + 1 - 2ht appearing in w(t) have the same discriminant 
A = h' - A. The zeros of N ( t )  in the parameter range 0 < A < 1 and 0 < ~ h  < 1, the region 
S, are 

y = h + &  6 = h - &  (16) 

whereas D ( t )  has zeros at 

~6 Y 
h A p = - .  CL=-  (17) 

The square S is divided into two regions by the disorder line A = h' [7], sepvating 
oscillating from monotonous behaviour of the correlation functions [ll]. 

In the region SI (A =- h').the zeros are painvise complex conjugate, whereas in the region 
S, (A < h') the zeros are all real and ordered according to -03 < 6 < y ,  c p < ct < 03. 

"be inversion of the elliptic integral in the region SZ is more involved and we shall defer its 
study to a subsequent publication. In the remainder of this paper we shall be only concerned 
with the region SI. 

The region SI is limited by three boundaries which contain known results [71: 
h = &the doubled king model, viewed as a free-Fermion eight-vertex model [IO]: @n 

and @,, are Carlitz elliptic polynomials of imaginary arguments. 
A = 1-isotropic case in the presence of a magnetic field h. The'solutions @,, are given in 
terms of Meixner Pollaczek polynomials. 
A = h2-the disorder line, where the solutions @" are expressed in terms of Gottlieb 
(Meixner polynomials of the first kind) polynomials. 
Note that on these three boundaries the three types of polynomials are all orthogonal 

polynomials, and their recursion relations are always reducible to tridiagonal form. The @n 
and @n studied here provide an interpolation between the three classes of polynomials and are 
presumably also orthogonal polynomials. 

. 
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The elliptic integral w(t) may be inverted in a standard way: one may give t as a function 
of w following the example given in the book of Greenhill 119, section 701. In the following 
we outline Greenhill's procedure. 

Through the change of variables 

N ( t )  ? + A - 2 h t  
y(t) = - - 

D(t)  - A t z +  1 -2ht 

the elliptic integral is transformed from its Jacobian form w(t) into the WeierstraJl form 

where yo = y(to) and y~ and y2 are the maximum and minimum values of y o ) ,  respectively, 
at the points tl and t2 related by 

h2(1 - yi,z)' = (A - Yi,z)(l -AYi.z) YI = Y;' (20) 

tl.2 + 1 = 0 il = t;' (21) 
1 + A  t -- 1.2 h 

and 

YZ = { (1 +A2 - 2h2) - (1 - A)J(1 + A)z - 4h2 2(A - h2) 

Then from the standard WeierstraB form one may solve the inversion problem in three 
different ways: 

h - h2 YI - Y2 

A-h2 . Y1 -Y2 

in terms of the Jacobian elliptic functions sn(u, K ) ,  cn(u, K )  and dn(u, K )  of argument U and 
modulus K .  In particular, the modulus K is given by K~ = 1 - y:, thus yz is the complementary 
modulus of K .  Conversely, for later use one can extract from (23) the quantities 

1 
YZ 

y = -dnz(wq.K) 

with q = ,/W. To obtain t as a function of w, i.e. to invert the ellipticintegral (15), 
we use equation (102) of Greenhill [19] 
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By dividing out these equations and using thefirst two equations of (24), as well as y1yz = 1 
and tltz = 1, we obtain the following form for t = t (w): 

Thus in the case of the two parameters A and h the inversion of (15) yields a rational function 
of the Jacobi elliptic functions sn and cn. However, in order to agree with the known results 
on the boundary line h = 0, where we have a canonical elliptic integral of Legendre form and 
hence t is simplyproportional to a Jacobi elliptic sn(u, k)  function, as was always the case in 
previous studies [7] on special lines where one had therefore only one parameter, we transform 
to imaginary argument and complementary modulus yz (K’ + y; = 1) with the transformation 
formulae (Jacobi’s imagniry transformation) 

(28) 
sn(iqw, K‘) 1 
cn(iw, K’ )  cn(iqw, K’) . 

sn(qw, K) = -i cn(qw, K) = 

Thereby we obtain 

At h = 0 one may directly invert the elliptic integral of Jacobian form 

dx f 

w(t) = 1 J(hx2 + I ) (xz  + A) 

to obtain 

A ’ = d i = X .  sn(w, A‘) 
cn(w, A’) t(w) = f i  

By transformation to imaginary argument and complementary modulus, this yields 

t = -ifisn(iw, A). (30) 

Of course we require that (29) reduces to (30) in the limit h + 0. To achieve this we shift 
the argument in (29) by K’, the complete elliptic integral of the complimentary modulus, i.e. 
the quarter period in the imaginary direction of the Jacobian elliptic functions: w = -U + wo 
with qwo = K’(yz), which transforms the function sn according to 

1 
ksn(u, k) 

sn(u + iK’, k) = 

Through this last transformation we arrive at 

Basically this result means that we have to choose the lower integration bound in (15) in such 
a way that (31) holds. For h -+ 0 (i.e. yz + A and tz ‘4 0) equation (31) now agrees with 
(30). From now on we shall use this condition at h 4 0 as areference which will also fix the 
constants in the generating functions (12) and (13). 
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5. Expressions for the generating functions 

From (26) we have for the prefactor of the generating function 40) 

H-P Eckle and T T Truong 

Using the second equation of (24) and performing both transformations described above 
consecutively, i.e. Jacobi's imaginary hansformation and the transformation according to the 
shifted argument, we obtain, together with (31), to evaluate (t - tz) 

For h + 0 this expression has the correct limit [lo]  

Hence we obtain the generating function of the 6" as 

Similarily, using the first equations of (24) and (25) we obtain, after the necessary 
transformations, the generating function for the other set of components of the eigenvectors *" 

To simplify the notation we shall set 
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6. The elliptic polynomials ?If,, and q5n 

From thegenerating functions (12) and (13) wemay compute thecoefficients qn and $", which 
are of course functions of the eigenvalue E ,  with the help of Cauchy's formula 

Substituting $(t)  by its expression (36) and using the variable 5 with 

we obtain 

where z = iqu and x = q-lc ,  the scaled eigenvalue. 
We can express @" in terms of the usual Caditz polynomials (cf [lo]) 

-- 

where 

Ci forpeven 

D; forpodd 
P J X )  = 

are the Carlitz polynomials of even and odd order, respectively, associated with the Jacobian 
elliptic functions cn and dn.~ Then @" takes the form of a formally infinite series in these 
polynomials: 

The condition t = 0 is equivalent to 5 = tz  - e = 0. Thus the contour integral in (39) may be 
evaluated directly in the complex g plane 

(1 - t2'+ tzo" dg = 2izuo(p) - j ( t 2  - (!I+' 

where 

We arrive at 

(40) 

(41) 
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However, the * n ( x )  are nevertheless polynomials of finite order n in the variable x. To see 
this we first evaluate (4 1) formally for n = 0. We have 

H-P Eckle and T T Truong 

Defining 22 by 

b = i&sn(z?, Y Z )  

we can resume the series and find 

which is essentially a constant. From @O taken formally at arbitrary values of z we can compute 
all q,, for n =- 0 and thereby indeed show that pn are polynomials of finite order n. For $1 

we obtain, for example, the following formula: 

which is a polynomial in x of first order after dividing out the exponential. 
More generally we can show that $rn is a polynomial of order n in x given explicitly by 

(43) 
With the same procedure we show that & are polynomials in x of finite order n 

Here 
0;; for p even 

C,' forpodd 

and we have for n = 0 

from which we again compute all polynomials &(x)  of order n > 0 explicitly: 
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7. Rea1 integral representation and asymptotic behaviour 

In the same spirit as in [lo] we now derive the real integral representation for @n(x),  using (37) 
inthecomplexz-plane. As before in [IO], wechoose therectangularcontourh(z) = &K‘(yz) 
and Re(z) = ~i K (yz )  surrounding the point zz which now is not necessarily at 0, as was the 
case in [lo]. We obtain @“(x) as a sum of two contributions of the form 

Note that in the second part of (47) the elliptic modulus K = G, the compIementq 
modulus of yz, appears. As in [IO], the second contribution in (47) dominates when n + 03 

because the complex number 

f2 * i&sn(u, Y Z )  
1 *itz&sn(u, Y Z )  

has a modulus smaller than 1: 

sinceyz sn2(u, yz) < 1 isalways fulfilledforgeneral values of u. Onthecontrary, themodulns 
of the complex number 

> 1  f o r O c u < K / 2  
< 1 for K/2 < U < K 

t;y2 + dn2(u, K) J YZ + t:dn2(u, K )  

Hence for n --f 03 we only have to consider 
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Using the fact that dn(u, K )  and cn(u, K )  are both even functions of the variable U, we derive 
an alternative form for the asymptotic of qn(x) 

H-P Eckle and T T Truong 

2rN 
$&) --2 ---{COS(XK'(K))Z,(X) - sin(xK'(~))Z~(x)] (49) 7r 

where Z,(x) and Z;(x) are the following integrals: 

.JLicosnq+tzdn(u, ~ ) s inn (p  
yz + t:dn2(u, K )  

cosh(xu) cn(u, x)pn(u)  du 

Kc') a s i n n 0 1  - tzdn(v,~)cosnq 
cosh(xu) cn(u, ~ ) p " ( u )  du 

yz + tzdn2(u, K )  
ZA(X) = 

with p ( u )  and ~ ( u )  defined by 

Weobservethatp(u) isadecreasingfunctionofu, aquiringvaluesfromv'(t,Zy2 + l)/(yz + ti) 
atu = 0tov'(yz+t,2)/(t:yz+ 1)atu = K ( K ) .  Sincep(iK) = ~theintegrationinterva~~or 
large n -+ CO is practically limited to [O, K/21 only and we can approximate p by its maximum 
valuep J( tzyz  + 1)/(y2 + tz). Moreover,inthisinterval,hosh(xu) cn(u, K )  Z 1 andpeaks 
at apoint near U = K .  Thismeans that Z,,(x) 2 Z, andZL(x) Z areconstants independent 
of x :  

=, = (/&i&)"liK(r) Jjiicosn(o+tzdn(v,K)Sinn(p YZ + t:dn2(u, K) du (53) 

Within these approximations one may t estimate the zeros of @n(x) in the asymptotic limit 
n -+ CO. They are given by the equation 

L" tan(Xx'(K)) = - = tan& 
Z:, 

or, for each n,  the zeros xaP are labelled by p :  

xnP = e,, + PZ . 
The eigenvalue problem set in (2)-(7) is equivalent to 

leading to 
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The spacing between the GN,, is thus constant and there is a shift for each N given by e,, 
defined by (57). 

A similar analysis for q+"(x) may be given. We only quote the results 

Again only the second integral dominates as n + ~00 for the same reason as before in the 
expression for @,,. This last part may be recast into the following form, which incidently is 
proportional to i: 

with 

where p and 'p are again given by (52). For n --f CO the behaviour of p again limits 
the integration to the interval [O, K/21 and p can be approximated by its maximum value 
p J(t:yz + l)(yz + t:). However, here the product sinh(xu) sn(u, K )  behaves as xuz  in 
[O,  K/21, instead of being nearly a constant of order unity. Thus we obtain the asymptotic 
behaviour for q+n(x) 

2 i ~ N  . 
2 - {X COS(Xf?(K))Ta - X sin(xK'(K))?A} (63)  7T 

where now 

Tn = (/-)" L + X ( K )  U a c o s n ' p  + tz dn(u, K )  sinn'p du ~ 

YZ + t2' YZ + t:dnz(u. K )  

are constants independent of x. The zeros xnp of @ n ( x )  are asymptotically given by 

Tn 
zl tan(x,,K'(K)) = 7 = tang,. 
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The boundary conditions (6) and (7) of the CTM problem yield the eigenvalues EN,, 
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or 

We observe again that the levels 6~,-are equidistant in this limit of large N ,  but there is 
a translation by an amount (q/  K’(K))& for each polynomial of order N .  

Equations (58) and (66) arethemainresults of this paper, again confirming, forthe simplest 
vertex model, the results of Baxter [2] in an explicit calculation for a finite system. 

A last remark concerns the level spacing. From (58) and (66) we have 

The modulus used here is y2  of (22). For h = 0 we have y2 = A, which is thus different from 
the modulus parametrization us‘ed in [IO]. which was A-’. Moreover, the normalization of 
the energy levels is also different due to the fact that the Carlitz polynomials are used directly 
in [IO]. TheCarlitzpolynomials are normalized so thatthefirst one is always 1 orx, depending 
on the parity. Here our @&) is not 1 but contains ann dependence according to (42) which 
may be divided out later. 

At h = 0, where yz = A and tz = 0, there is a decoupling in (47) and (59), respectively, 
and we recover the results of [ IO]. 

As in [I], we have checked the level spacing (67) numerically with standard methods (cf 
[ZO]) of diagonalizing the pentadiagonal matrix which is equivalent to the recursion relations 
(2) and (3) if either or +,, is eliminated. We have observed equidistant level spacing to 
rather high accuracy already for very moderate system sizes of the order of N = 20. 

8. Summary and conclusion 

Thegenerator ofthe CTM ofageneralizedfreeFermionvertex systemoffinitesize is aquantum 
spin chain Hamiltonian with particular interactions which increase linearly along the chain. 
We have presented the analytical diagonalization of this particular quantum spin chain in the 
asymptotic regime of large system size N for arbitrary values of the parameters, the anisotropy 
A and the magnetic field h, in the region where A > h2. 

Let us briefly summarize the methods applied to accomplish our goal and restate our 
main result for easy reference. The asymptotic diagonalization has been achieved through the 
explicit construction of a new class of elliptic polynomials which are the components of the 
eigenvectors of the problem. In this construction an elliptic parametrization of the generating 
functions of the polynomials has been used which is based on the treatment of a two-parameter 
elliptic integral. The asymptotic evaluation of an integral representation of these polynomials 
yields the eigenvalues, given by (58) and (66), respectively, which are equidistantly spaced 
with spacing 
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the modulus y2 of the complete elliptic integral K(yz) being related to the generating functions 
of the eigenvectors and given explicitly in (22). This equidistant spacing is the main result of 
the present work, extending the findings of previous studies [I ,  7,9] to general values of the 
parameters and thereby confirming once again the general expectation 121. 

We have not touched on the issue of the orthogonality of the polynomials & ( x )  and 
&(x), which may be called associate Carlitz polynomials. Since the three limiting cases are 
orthogonal polynomials, it is natural to expect that the 'associated Carlitz polynomials' remain 
orthogonal. Presumably theproofis basedon thecontinuous fraction expansion ofsomeelliptic 
functions interpolating between the Jacobian elliptic functions cn(x, k )  and dn(x, k )  [14]. We 
have not succeded in proving this yet. 
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Appendix 

As we have seen, the main problem has been the inversion of the elliptic integral of (15). The 
solution obtained was given in (31), which, upon replacing tz by its expression, reads 

h(1 - YZ) - i(1 - Ayz)fisn(iqu,'yz) 
(1 --hyz) - ih(1- yz)fisn(iqu, YZ) ' 

t =  

In this appendix- we check the limit A + 1 against a direct calculation. Let us assume 
A = I - ~ , t h e n y ~ =  1 - € / ~ o r , u s i n g ~ h = c o s B a s i n ~ [ 7 ] , y z =  l-e/sinB. Thento 
first order in E, (1 - hyz) Z ~ ( 1 +  I/sin~e). and we have 

l i  sn(iqu, y ~ )  = tanh(iu sine) 
A i r 1  

and 

cose+( l  +sine)tan(usine) 
~ - 1  (1 +sine)+cosetan(usine) 
limt = 

which upon inversion gives U as a function oft: 

(1 + sin 0 - t cos 8 )  + i(cos0 - (1 + sin6')t) 
( l+sine- tcose)- i (cose -(l+sinO)t) 

or 

which agrees with the u( t )  computed directly from the integral (U) with h = 1. 
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Next we check the limit h i h2. There we have 

A - h 2  
-0 

(1 - h2)' YZ = 

and 

4 h - h 2  . 
lim i,&sn(iu, yz) = -- "(1 - hz)u) .  

n-0 (I - hz) 

Now to obtain the correct limit we must impose a shift 

~ ( l  - h2) = ~ ( l  - h2) - i K ' ( y 2 ) .  

Then as yz + 0 

lim = x(1- h2) - 4 ln(4/yz) = x(1- hz )  - In 
YZ+Q 

leads to 

Finally for h + h2 

which one obtains by direct integration. 
The correctness of the two limits implies that the limiting generating functions are 

generating functions for Meixner polynomials of the first and second kinds according to the 
classification of Chihara [181 or the Gottlieb and Meixner Pollaczek polynomials according to 
an independent classification. 
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